The exocyst and regulatory GTPases in urinary exosomes

نویسندگان

  • Maria F. Chacon‐Heszele
  • Soo Young Choi
  • Xiaofeng Zuo
  • Jeong‐In Baek
  • Chris Ward
  • Joshua H. Lipschutz
چکیده

Cilia, organelles that function as cellular antennae, are central to the pathogenesis of "ciliopathies", including various forms of polycystic kidney disease (PKD). To date, however, the molecular mechanisms controlling ciliogenesis and ciliary function remain incompletely understood. A recently proposed model of cell-cell communication, called "urocrine signaling", hypothesizes that a subset of membrane bound vesicles that are secreted into the urinary stream (termed exosome-like vesicles, or ELVs), carry cilia-specific proteins as cargo, interact with primary cilia, and affect downstream cellular functions. This study was undertaken to determine the role of the exocyst, a highly conserved eight-protein trafficking complex, in the secretion and/or retrieval of ELVs. We used Madin-Darby canine kidney (MDCK) cells expressing either Sec10-myc (a central component of the exocyst complex) or Smoothened-YFP (a ciliary protein found in ELVs) in experiments utilizing electron gold microscopy and live fluorescent microscopy, respectively. Additionally, human urinary exosomes were isolated via ultracentrifugation and subjected to mass-spectrometry-based proteomics analysis to determine the composition of ELVs. We found, as determined by EM, that the exocyst localizes to primary cilia, and is present in vesicles attached to the cilium. Furthermore, the entire exocyst complex, as well as most of its known regulatory GTPases, are present in human urinary ELVs. Finally, in living MDCK cells, ELVs appear to interact with primary cilia using spinning disc confocal microscopy. These data suggest that the exocyst complex, in addition to its role in ciliogenesis, is centrally involved in the secretion and/or retrieval of urinary ELVs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RAL-1 controls multivesicular body biogenesis and exosome secretion

Exosomes are secreted vesicles arising from the fusion of multivesicular bodies (MVBs) with the plasma membrane. Despite their importance in various processes, the molecular mechanisms controlling their formation and release remain unclear. Using nematodes and mammary tumor cells, we show that Ral GTPases are involved in exosome biogenesis. In Caenorhabditis elegans, RAL-1 localizes at the surf...

متن کامل

Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs.

The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobil...

متن کامل

The exocyst complex in plants.

Plant cell morphogenesis requires precise regulation of localized cell expansion and cell division. Vectorial exocytosis is a major morphogenetic process in plant cells, intimately interwoven with the dynamics of the cytoskeleton. Small GTPases of the Ras superfamily act as molecular switches participating in the control of both vesicle trafficking (Rab GTPases) and cytoskeleton dynamics (Rho G...

متن کامل

Exocytosis: The Many Masters of the Exocyst

The exocyst is a conserved eight-subunit complex involved in the docking of exocytic vesicles. The exocyst has now been identified as an effector for five small GTPases, including Sec4, Rho1, Rho3, Cdc42 and, most recently, RalA.

متن کامل

Exocyst Subunits Exo70 and Exo84 Cooperate with Small GTPases to Regulate Behavior and Endocytic Trafficking in C. elegans

The exocyst complex is required for cell polarity regulation and the targeting and tethering of transport vesicles to the plasma membrane. The complex is structurally well conserved, however, the functions of individual subunits and their regulation is poorly understood. Here we characterize the mutant phenotypes for the exocyst complex genes exoc-7 (exo70) and exoc-8 (exo84) in Caenorhabditis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014